SANS FOR610 WORK NOTES

Reverse—-Engineering
Malware: Malware Analysis
Tools and Techniques

This document is FAR from being a replacement of the official
SANS materials but I made it to prepare myself for the GREM
Certification with the important topics I wanted to focus on.

The page number references are from the official SANS PDF
materials version FOR610_2_G01_05

Hope it helps @

Created by Martin Bayard in 04/2023 - http://prfalken.org

http://prfalken.org/

Table of Content

610.1 : Malware Analysis Fundamentals............. 5
Introduction to Malware Analysis (Page 4) 5
Pyramid of Complexity (Low to High) (Page 9) 5
Typical Report (Page 11)ttt ittt neenineeeennnnn 5
Investigation Taps ...ttt e ettt e e 5
Malware Analysis Lab (Page 23) ...ttt e, 6
Static Properties Analysis (Page 37)ciiiiiiiiiieennnnnnnn. 6
Static Properties (Page L2) ...ttt 6
Lo J 8 6
Behavioral Analysis Essentials (Page 51)ccciiininnn... 7
LI 1= 7
Code Analysis Essentials (Page 78)coiitininnneennnennnn 8
Speakeasy (Page 83)ttt ittt ittt e e 8
Capa (Page 8b6) ...ttt ittt ettt e e 8
X6LUADG (Page 89) ..ottt e e e e 8
API Monitor (Page 101)ttt ettt ettt ettt eeeeeeeennns 8
Exploring Network Interactions (Page 111) 9
Example with brbbot.exe i i e 9
INetSim (Page 119) ... it ittt ittt et et ettt 9
Fiddler (Page 123) ..ottt ettt ittt et et e e eaennnn 9
IP Redirection (Page 126)tiintintenineenieennennnn. 9
610.2 : Reversing Malicious Code..............uuuuiiinnnnnnnnnnnn. 10
Core Reversing (Page 3)ttt ittt et e 10
Ghidra ... 10
Variables e e 10
Registers (Page 25)ttt ittt et 10
Addressing Memory (Pages 31-33)iiiiiinneeennnnnneeennn 11
Conditional Jumps (Page L2) ...ttt nnnnnns 12
Unconditional JUMPSottt ittt ittt etneeenanens 12
Reversing Functions (Page 61)ciiiiiiieennnnnneeennnnnn 13
Prologue (Page 67)ttt ittt ettt et e ie e e 13
Epilogue (Page B7) ...ttt ittt ittt ettt 13
Function Example (Page 69)ciiiiiitinnnneeennnnnnnn. 13
The Stack (Page 68)ttt i ettt et e e 14
Stack Example (Page 70)ttt 14
Calling Conventions (Pages 72=73)t iieinnniiieennnnnn 14

Created by Martin Bayard in 04/2023 - http://prfalken.org

http://prfalken.org/

CONTROL FLOW IN-DEPTH (Page 97) ...ttt 15

API Patterns in Malware (Page 135)iiiiiiiieennnnnnnnnnn. 16
RESOUICES .ottt i i e e e e 16
Mutex/Mutantt et e 16
Stealers .. e e e 16
Internet e 16

6U4-BIT Code Analysis (Page 1U7)cuiiiiieeeneeniieennnnnn 16

610.3 : Analyzing Malicious Documents..............., 17

Malicious PDF File Analysis (Page 3)c.iiiiiiiiinneennnnnn 17
Risky Keywordsttt ittt it et 17
L 1 1 17

VBA Macros in Microsoft Office Documents (Page 36) 18
Formats e e e e e 18
L 1 1= 18
VBA StOMPINg ...t ittt ittt et e e e e 20
VBA PUIGaNg . ittt et ittt ittt ettt ettt ettt tee e tae e eneeenaeennnns 20
L o 1 20

Examining Malicious RTF Files (Page 99)ciiiiiiinnnnnnn.. 21
TOOLS Lot e e e e 21
Shellcode i et et e e e 21

610.4 : In-depth Malware Analysis..............uuuiiiiiinnnnnnnnn. 22

Deobfuscating Malicious JavaScript (Page 3), 22
KeYIWOrdsS . e e e e e e 22
REMNUX .« ..ttt e e it it e e e et e e e 22
WANAOWS . .ottt e e e e e e 22

Recognizing Packed Malware (Page 19)iiiiiiinneeennnnnn 23
INdicators e e e e e 23
L 1 1 23

Getting Started with Unpacking (Page 32), 23
AppProach e e e e 23

Using Debugger for Dumping (Page 45)cciiuiiiininennnnenn. 24
Approach e e 24

Debugging Packed Malware (Page 61)cuuiiiiinnnnneeennnnnn 24
Approach e e 24

Analyzing Multi-Technology Malware (Page 73)ccovveunn.. 25
L Lo 2 25
Approach e e 25

Created by Martin Bayard in 04/2023 - http://prfalken.org

http://prfalken.org/

Code Injection and API Hooking (Page 125)ccvvuivnnnn.. 26

Code InJeCtaion ...ttt ittt et e et e 26
DLL Injection (Page 1U2)t iiiiiiiiitttteeeeeneneennnns 26
Hooking (Page 1L3)ttt ittt ittt ittty 27
610.5 : Examining Self-Defending Malware.............couieiiunnnn.. 28
Debugger Detection and Data Protection (Page 3) 28
Debugger Detectionttt e e 28
Data Protection i e 28
Unpacking Process Hollowing (Page U3)ciiiiiinneennnnnn 29
Example (Page Sottt e e e e 29
Detecting the Analysis Toolkit (Page 61)cccvnnn.. 29
Sandbox and LAB detection 29
Example with vbprop.exe (Page 65)cuiiiiiiieennnnnnn.. 30
Example with raas.exe (Page 72) ...ttt ennnnnnnn. 30
Handling Misdirection Techniques (Page 93) 31
SEH : Structured Exception Handling (Page 97) 31
TLS Callbacks (Page 11h) ...ttt ittt 32
Unpacking by Anticipating Actions (Page 143)c.... 33
Example with yep.exe (Trickbot) (Page 145) 33

Created by Martin Bayard in 04/2023 - http://prfalken.org

http://prfalken.org/

610.1 : Malware Analysis Fundamentals

Introduction to Malware Analysis (Page u4)

e Fully automated analysis

e Static Properties Analysis

e Interactive behavior analysis

e Manual Code Reversing

e Summary of the analysis : Key takeaways

e Identification : Files, hashes, strains ...

e Characteristics : Capabilities for infection, spreading ...

e Dependencies : Files and network resources ...

e Behavioral and code findings

e Supporting figures : Logs, screenshots, strings

e Incident Recommendations : Indicators for detecting and
eradication

Pivoting : Approach to look for associations between known attributes
of the malicious program with new characteristics.

e Hide your origin (Page 19)

o TOR : but exit nodes are well known

o Commercial VPN : cheap and fast but exit nodes are well
known

o Custom VPN : Setup OpenVPN on a public cloud is the best
solution to keep investigations undetected

o Warning of DNS leakage : make sure DNS traffic goes through
VPN

e Using public services :
o Don't upload samples to 3rd party unless you're sure why
o Using public tools like urlQuery or VvURL can reveal the
investigation

Created by Martin Bayard in 04/2023 - http://prfalken.org

http://prfalken.org/

Malware Analysis Lab (Page 23)

Virtual
o Isolation

e "host-only" network or "custom virtual network" (no
host virtual adapter connected)

e Avoid using "Shared Folders" or USB Device Mapping

e Keep your host and hypervisor up to date with latest
patch to avoid VM escapes

e VM Tools can be detected easily and change the behavior
of the malware

e Restore with Snapshot is very convenient

Physical
o Restore with Disk Cloning Solutions : CloneZilla, FOG, dd
o Restore with PXE booting
o Restore with Software mimics snapshots (not 100%)

Static Properties Analysis : PeStudio, strings, CFF Explorer,
peframe, Detect It Easy ...

Behavioral Analysis : Process Hacker, Process Monitor, RegShot,
Wireshark, fakedns, INetSim ...

Code Analysis : Ghidra, x32dbg/x6udbg, OllyDumpEx, Scylla, runsc32
or scdbg for shellcodes ...

Static Properties Analysis (Page 37)

File and Section hashes
Packer Identification
Embedded Resources
Imports and Exports
Crypto References
Digital Certificates
"Interesting" strings

pestr

strings -a (once for ASCII, then —-encoding=1 for Unicode)
peframe (REMnux) and PeStudio (Windows) both give a good overview
of the PE

Detect It Easy and Exeinfo PE both give a good overview of the PE
Header (compiler, packer, entropy, hashes ...)

Created by Martin Bayard in 04/2023 - http://prfalken.org

http://prfalken.org/

Behavioral Analysis Essentials (Page 51)

e Process Hacker
o Advanced Task Manager
o Network Tab is limited to active connections, no historical
view (check TcpLogView instead if needed)
e Process Monitor
o Records processes, registry, network, file activity
o Use filters to remove noise (unwanted / 0S related events)
e RegShot : Take a shot before detonation, a shot after detonation,
and find modifications on files and registry keys
e ProcDot : Use Process Monitor output to create a graphical view
e Wireshark
o Sniff and analyze network packets (http, dns ...)
o Run it on REMnux with Windows Default GW defined with REMnux
IpP
o Right Click -> "Follow" -> "TCP Stream" shows the complete
HTTP Request
e fakedns : On REMnux, will respond to DNS queries
e httpd : On REMnux, will respond to HTTP requests
e INetSim : On REMnux, will respond to DNS, HTTP, HTTPS queries,
will send fake files to malware ...

Approach by "resource starvation" : give the malware only what he needs

-> if enabling DNS responses too early, we could miss tries to other
domains.

Created by Martin Bayard in 04/2023 - http://prfalken.org

http://prfalken.org/

Code Analysis Essentials (Page 78)

e Static Code-level analysis :
o Disassembler gives assembly
o Decompiler gives pseudo code.
e Dynamic code-level analysis :
o Debugger runs the code step by step (in assembly or higher
level language)
e Emulating
o Speakeasy, capa, binee, Qiling, Vivisect
o Useful to examine API activity
o Can be confused by unfamiliar instructions or API calls

e run_speakeasy.py -t malware.exe —-o malware.json 2> malware.txt
e jq ".entry_points[].apis[].api_name" malware.json | more

e capa -vv malware.exe | more
e Show ATT&CK and MBC (Malware Behaviors Catalog) matches

SetBPX / bpx / bp ReadFile (case sensitive API)
Run (F9)

Step Into (F7)

Step Over (F8)

Execute till Return (Ctrl-F9)

Run to User Code (Alt-F9)

e Select the API you want to monitor
e Select the process to observe
e Check the returned values (decrypted buffer for example)

Created by Martin Bayard in 04/2023 - http://prfalken.org

http://prfalken.org/

Exploring Network Interactions (Page 111)

Launch web server on REMnux : httpd start

Create a file : echo "cexe c:\windows\notepad.exe" >
/var/www/html/ads.php

Start brbbot.exe on Windows and observe it launching notepad after
sometime

Support a lot of services

Configuration of services in /etc/inetsim/inetsim.conf
Logs stored in /var/log/inetsim/service.log

Files stored in /var/lib/inetsim

Intercept traffic on client side

Enable rules in AutoResponse

Make sure https decryption is enabled

Review the Inspectors —> Raw tab for details

Enable
o iptables -t nat -A PREROUTING -i eth® -j REDIRECT
o accept-all-ips start

Disable
o iptables -t nat -D PREROUTING -i eth® -j REDIRECT
o accept-all-ips stop

Created by Martin Bayard in 04/2023 - http://prfalken.org

http://prfalken.org/

610.2 : Reversing Malicious Code

Core Reversing (Page 3)

.text : Executable Code

.rdata : Read-only data

.data : Data

.reloc : Relocation data to fix up addresses in the file if it is not
loaded at its preferred address

Green Arrow —-> Path if the condition is met

Red Arrow —-> Path if the condition is NOT met

Blue Arrow —> Code Block ends with an unconditional JUMP

To resize columns : Browser Field Formatter

To see imported functions :
o Window -> Symbol References (+ filter by Imported)
o Focus on Access : "Call" in the right panel

e Rename variables and functions to make it more clear

e Local : Only accessible in the function that allocates it

e Global : Accessible from anywhere within the program and display
with an address (DAT_XXXXXXXX)

e Static : Only accessible in the function that allocates it but
not marked for reuse

Static and Global are indistinguishable in assembly.

EAX : Addition, Multiplication, Return Values
EBX/EDX : Generic Registers
ECX : Counter
EBP :
o Arguments/Parameters (EBP + Value)
o Local variables (EBP - Value)
e ESP : Last Item on the Stack
e ESI/EDI : Memory Transfer
e EIP : Address of the next instruction to execute

"A pointer is simply a variable that contains the address of some
location in memory"

Created by Martin Bayard in 04/2023 - http://prfalken.org

http://prfalken.org/

e Direct : "Brackets mean fetch data at the specified address

(dereference)" -> MOV EAX, [0xu410230]
e Indirect : Base + (Index * Scale) + Displacement

@)
O

[EAX] : base
[EBP +0x10] : base + displacement / example : access data

on the stack

[EAX + EBX * 8] : base + (index * scale) / example : access
an array with 8-byte structures

[EAX + EBX + 0xC] : base + index + displacement / example :
access fields in a 2-dimensional array of structures

Created by Martin Bayard in 04/2023 - http://prfalken.org

http://prfalken.org/

e CMP is an implied SUB
e TEST in an implied AND

. short near
signed-

Instruction Description Flags jump jump
ness
opcodes | opcodes
Jo Jump if overflow OF =1 70 OF 80
JNO Jump if not overflow OF = 0 71 OF 81
JS Jump if sign SF =1 78 OF 88
JNS Jump if not sign SF =0 79 OF 89
JE Jump if equal _
Jz Jump if zero ZF=1 ™ LA
JNE Jump if not equal _
JINZ Jump if not zero = g2 AR
Jump if below
%8 Jump if not above or
JINAE P unsigned |CF = 1 72 OF 82
equal
Jc .
Jump if carry
JNB Jump if not below
JAE Jump if above or equal | unsigned CF=0 73 OF 83
JNC Jump if not carry
JBE Jump if below or equal . CF =1 or ZF =
JNA Jump if not above TnisdEmRe 1 e B
Jump if above - -
o Jump if not below or unsigned dF = el 27 S g, OF 87
JNBE 0
equal
I Jump if less
Jump if not greater or signed SF <> OF 7C OF 8C
JINGE
equal
JGE Jump if greater or equal| . _
INL Jump if not less signed SF = OF 7D OF 8D
JLE Jump if less or equal . ZF = 1 or SF <>
JING Jump if not greater Srigee OF i3 27 i3
JG Jump if greater . ZF = 0 and SF =
JINLE Jump if not less or equal SrgEe OF i U7 il
Jp Jump if parity _
JPE Jump if parity even A= i U7
JNP Jump if not parity _
JPO Jump if parity odd . U3 2lF Gl
Jump if %CX register is
JCXZ 0 %CX = 0 £3
JECXZ Jump if %ECX register is %ECX = 0
0
e JMP XXX

e CALL XXX : PUSH EIP, JUMP TO XXX
e RET : POP EIP

Created by Martin Bayard in 04/2023 - http://prfalken.org

http://prfalken.org/

Reversing Functions (Page 61)

e Allocates space for variables
e Saves registers that will be reused in the function body
e Example :
o PUSH EBP (save the current EBP -> saved Frame Pointer (SFP))
o MOV EBP, ESP (save ESP in EBP to be used as unchanging
reference to part of the stack because ESP may vary in the
function body)
o PUSH ECX (Allocate space for local variable, which decrement
ESP by 4 with shorter space than a SUB ESP, u4)

e Cleans up the stack
e Restore registers
o Example :
o MOV ESP, EBP (restore ESP)
o POP EBP (restore EBP)
o RET (POP EIP -> move the return address into EIP register
to jump back to the caller)
e LEAVE opcode is equivalent to (MOV ESP, EBP + POP EBP)
e Setting up the return value is NOT part of the EPILOGUE, but we
consider it is when it's surrounded by other epilogue instructions

PUSH EBP Save current EBP
Prologue | MOV EBP, ESP Save ESP in EBP
SUB ESP, 0x04 Allocate space for local variable 1

MOV EAX, [EBP + 0x08] Save Parameter 1 in EAX
ADD EAX, [EBP + 0x0C] Add Parameter 2 to EAX
ADD EAX, [EBP + 0x10] Add Parameter 3 to EAX

Function

R
Dlelv|o<Qa|u|slwin|e

) MOV [EBP — 0x0u4], EAX | Save EAX in local variable 1
MOV EAX, [EBP - 0x0d] Set return value in EAX
MOV ESP, EBP Restore ESP
Epilogue | POP EBP Restore EBP
RET Restore EIP

Created by Martin Bayard in 04/2023 - http://prfalken.org

http://prfalken.org/

e The stack is LIFO (Last In First Out) and grows toward lower
addresses

e Function arguments are pushed onto the stack in reverse order
(from RIGHT to LEFT)

e The role of EBP is to have access to Parameters and Variables in
a fixed manner in case the function also manipulates the stack
(ESP will change)

In the body of the function above, the stack will look like

Lower Addresses Local Variable 1 [EBP — 0x0u]
Saved EBP (also called SFP) [EBP]
Return Address [EBP + 0x04]
Parameter 1 [EBP + 0x08]
Parameter 2 [EBP + 0x0C]
Parameter 3 [EBP + 0x10]
Higher Addresses (Stack values before function is called)
e cdecl (most common) : Arguments on the stack (right -> left),

return value in EAX, caller cleans up the stack
e stdcall (WIN32 APIS) : Similar to cdecl but callee cleans up the
stack
e fastcall : Arguments in registers (ECX + EDX) + stack (if needed),
callee cleans up the stack (if needed)
e thiscall (Used in C++)
o Microsoft Compilers : ECX holds "this" pointer, callee
cleans up arguments on the stack
o GNU Compilers : "this" is pushed last onto the stack, caller
cleans up the stack

In some optimization cases of stdcall, arguments are MOV to the stack
(ex MOV dword ptr [ESP+local_8], 0x0), but as the callee did the clean-
up (add X bytes to ESP before returning), the compiler needs to
compensate by undoing the clean-up (sub X bytes to ESP)

Created by Martin Bayard in 04/2023 - http://prfalken.org

http://prfalken.org/

CONTROL FLOW IN-DEPTH (Page 97)

Loops have 5 major components
o Control Variable : Used to determine if a loop exists

o Loop Initialization : The value of the control variable is

initialized (outside the body loop)
o Loop Body : Code Block executed

o Loop Update: The value of the control variable is modified
o Stopping Condition : Used to determine if the loop should

exit
Simple Expressions evaluate only a single condition
o if (x<d) { block of code }
Compound Expressions evaluate multiple conditions
if (x<d) AND (x>1) { block of code }
AND (Page 124)
o Invert the logic of the condition
o Jump to end of block if true

Pseudo Code Assembly

If ((a<d4) && (2>1)) { CMP EAX, 4

JNL END
CMP EAX, 1
JNG END
BLOCK1:
Code Block Code Block
3 END:
Next Code Block Next Code Block

OR (Page 125)
o Test each condition
o Jump to code block if a condition is met
o Negate logic of last condition and jump to end if true

Pseudo Code Assembly

If (Ca<dw) || (a>10)) { CMP EAX, 4
JNL BLOCK1
CMP EAX, 10
JNG END
BLOCK1:

Code Block Code Block
} END:
Next Code Block Next Code Block

Created by Martin Bayard in 04/2023 - http://prfalken.org

http://prfalken.org/

API Patterns in Malware (Page 135)

FindResourceW : Determine Location of a resource
SizeofResource : Obtain the size of a resource
LockResource : Obtain a pointer to the resource
CreateFileA + WriteFile : Save the resource into a file

Frequently used by droppers

CreateMutexA : creates or opens a mutex object

Frequently used to detect if malware has already infected the system

GetKeyState / GetAsyncKeyState : Determine is a specific key has
been pressed

GetWindowText : Retrieves text from a windows's title bar
OpenClipboard / GetClipboardData / CloseClipboard : Gather data
from user's clipboard

InternetOpen / InternetConnect : Creates and HTTP Connection
HttpOpenRequest / HttpAddRequestHeaders : Build the HTTP Request
HttpSendRequest : Send the HTTP Request

InternetReadFile : Read the response to the HTTP Request

Frequently used by downloaders

6U4-BIT Code Analysis (Page 147)

Registers are now 64 bits (EAX —-> RAX, EBX -> RBX, EIP -> RIP ..)
8 new general-purpose registers r8 -> ri5

32-bit code running on 64-bit Windows use the WoW6d subsystem
Calling convention resembles fastcall (RCX, RDX, R8, R9 (from left
to right), then on the stack (from right to left))

RID is the lower 32 bits part of R9

ROW is the lower 16 bits part of R9

R9B is the lower 8 bits part of R9 (there is no equivalent of AH
to get the higher 8 bits part)

Created by Martin Bayard in 04/2023 - http://prfalken.org

http://prfalken.org/

610.3 : Analyzing Malicious Documents

Malicious PDF File Analysis (Page 3)

Executing Embedded JavaScript : /JS, /JavaScript, /AcroForm, XFA
Launching programs : /Launch, /EmbeddedFiles

Action when file is opened : /OpenAction, /AA

Interact with Websites : /URI, /SubmitForm

Images : /XObject (to confirm with the /Subtype), /Xform
Associate clickable link with an image : /Annots

Object Stream (stream that contains other objects) : /ObjStm

Filter FlateDecode : zlib/deflate decompression method

pdf-parser.py (Didier Stevens) (Page 9) :

o =-a : show a summary of the file (pdf-parser.py doc.pdf -a)

o =-s : select objects with a specific keyword (pdf-parser.py
doc.pdf -s /URI)

o -k : shows the values for the given Kkey (pdf-parser.py
doc.pdf -k /URI)

o -0 : examine a specific object (pdf-parser.py doc.pdf -o 6)

o =d : dump a specific object (pdf-parser.py doc.pdf -o 6 —d
object6.jpg)

o —f apply filters
(FlateDecode, ASCIIHexDecode ASCII85Decode,LZWDecode, RunLen
gthDecode)

o -w : raw
o -r : shows objects that reference the specified object number
(pdf-parser.py doc.pdf -r 6)
o -0 : specifies pdf-parser to look into Object Streams if any
e pdf-parser.py doc.pdf -0 -a
e pdf-parser.py doc.pdf -0 -k /URI
e pdf-parser.py doc.pdf -0 -r 39
o ++
Fiddler (Page 20)
o Proxy tool to examine HTTP(S) requests, possibility to
extract file that was downloaded in the stream

Created by Martin Bayard in 04/2023 - http://prfalken.org

http://prfalken.org/

VBA Macros in Microsoft Office Documents (Page 36)

e« Before 2007 : Object Linking Embedding 2 (OLE2)
also called
o Structured Storage (SS)
o Compound File Binary Format (CFBF)
o Composite Document File V2 (CDFV2)
e After 2007 : Office Open XML (OOXML)
o ZIP and XML based
o Macros are saved in a OLE2 file inside the ZIP

e zipdump.py (Didier Stevens)
o Extract a specific file (zipdump.py doc.doc -s 5 -d >
image. jpg)

e olevba (oletools from Philippe Lagadec)
o Analyze the doc : olevba doc.doc > doc.olevba

e oledump.py (Didier Stevens)
o =i : Shows information (oledump.py doc.doc -i)

o "M" = Macro present

o "m" = No meaningful macro code

o "I" = Anomaly (VBA Stomping, look for pcode and source code
sizes)

o xxx+yyy = size_of_pcode + size_of_compressed_source_code

o -s a : Select all streams that have VBA code

o =-v : Decompress VBA (oledump.py doc.doc -s a -v)

o -p : use plugin (oledump.py doc.doc -p

plugin_http_heuristics)

o re-search.py (Didier Stevens)
o Extract from input stings that match commonly used RE
o -n str-u : matches strings enclosed within quotation
o -n url-domain : matches URLs
o -n all : matches all known RE

e sets.py (Didier Stevens)
o Perform operations on lines of text
o join "" : will join all lines into a single one

e numbers-to-string.py (Didier Stevens) (Page 57)
o Extract decimal numbers from input into a string
o =j : join all lines

e xor-kpa.py (Didier Stevens) (Page 69)
o =X : XOR the 1st string with the 2nd string
o prefix with #h# to specify it's hexadecimal (xor-kpa.py -x
'#h#2B07372B185DU480C222A1C3B3204" '#h#665U6F ')

Created by Martin Bayard in 04/2023 - http://prfalken.org

http://prfalken.org/

base6Udump.py (Didier Stevens) (Page 88)

o Find base6d strings from the input (oledump.py doc.doc -s 7
-d | base6udump.py)

o View the first base6ld string from the input as a hexadecimal
viewer (oledump.py doc.doc -s 7 -d | base6uddump.py -s 1 -a)

o View the first base6ud string from the input as a readable
string (oledump.py doc.doc -s 7 -d | base6udump.py -s 1 -t
utf16)

translate.py (Didier Stevens) (Page 93)
o Translate the input using the specified Python expression
(base6uddump.py file.psl -n 10 -s 2 -d | translate.py "byte
~ 35" > shellcode.bin)

scdbgc (Page 94, 11d)
o Emulate a shellcode (scdbgc /f shellcode.bin /s -1)
o Emulate a shellcode at offset 0x3B (scdbgc /f shellcode.bin
/s -1 /foff 3B)
o Emulate a shellcode at offset 0x3B with an handle on a
document (scdbgc /f shellcode.bin /s -1 /foff 3B /fopen
doc.doc)

runsc32 (Page 116)
o Run a shellcode at offset Ox3B with an handle on a document
(runsc32 —f shellcode.bin -0 0x3B -d doc.doc -n)

yara-rules.py (Page 95)
o Run all the vyara configured on a file (yara-rules
shellcode.bin)

1768.py (Didier Stevens) (Page 95)
o Extract info from a CobalStrike payload (1778.py
shellcode.bin)

vmonkey (ViperMonkey from Philippe Lagadec)
o vmonkey doc.doc > doc.vmonkey
o Not always work but worth trying

Evilclippy :

o Remove the password on the macro (Macros are not crypted)
o evilclippy -uu doc.doc

Created by Martin Bayard in 04/2023 - http://prfalken.org

http://prfalken.org/

Source code is removed from the file, only the p-code is present,
can only work on a compatible Office version.
Look for "!" in the output of oledump.py doc.docm -I
oledump.py doc.docm -s A3 -v : Error unable to decompress
o oledump.py doc.docm -s A3s —-A : Shows the source code like
a hexadecimal viewer, most probably 00ed
o oledump.py doc.docm —-s A3c —-A : Shows the compiled code like
a hexadecimal viewer, look for strings
pcodedump.py doc.docm > doc.pcodedump : shows p-code in assembly-
like language specific to VBA, not really usable
pcode2code doc.docm : shows p-code in VBA which can be reused in
a new document + the debugger to analyze it

P-code is removed from the file, source can still be extracted by
oledump.py

If OLE2 file that contains VBA macros includes streams with "SRP"
—-> cached compiled copy which can be examined with oledump.py and
strings for example (Page 53)

Can check for "themeFontLang" value inside the "word/settings.xml"
(zipump.py doc.doc -s 9 -d | xmldump.py pretty | grep -i
"themeFontLang") (Page 54)

If the macro is referring to other parts of the document
(UserForml.CheckBoxl.ControlTipText for example), look for the
strings in the other streams that are related to this element
(oledump.py doc.docm -i —> with UserForml in the name for example)
-> "oledump.py doc.docm -s 5 -S" (Page 86)

Created by Martin Bayard in 04/2023 - http://prfalken.org

http://prfalken.org/

Examining Malicious RTF Files (Page 99)

rtfdump.py (Didier Stevens) (Page 102)

o Shows information (rtfdump.py doc.doc)

o Shows information about embedded objects (rtfdump.py doc.doc
-0)

o Extract embedded object (rtdump.py doc.doc -0 -s 1 -d >
doc.object), the extracted object can be an OLE2 -> use
oledump.py to see inside.

o Look for unexpected/unknown characters in the "u=" tag (Page
108)

o Look for the group with a lot of hex characters at the
deepest nesting level in the "h=" tag

o Examine the content of a group (rtfdump.py doc.doc -s 5) and
look for NOP sleds (909090..)

o Extract the content of a group (rtfdump.py doc.doc -s 5 -H
-d > doc.bin) (Page 110)

format-bytes.py (Didier Stevens) (Page 107)
o Parse binary data and format it according a format string
supported by Python struct module.
o Predefined format for Equation Editor (oledump.py doc.object
-s 4 -d | format-bytes.py —-f name=eqnl)

xorsearch
o Check if a file contains a shellcode by looking for well-
known operations (xorsearch -W -d 3 doc.bin) (Page 111)

CALL / POP (can be some JMP around) to get EIP

Access the PEB to locate kernel32.dll in the memory of the process.
A pointer to the PEB is at offset 0x30 of the TIB, which is at
address contained in the FS register

-> "MOV EAX, DWORD PTR FS:[30h]"

Tools : scdbgc and runsc32

Created by Martin Bayard in 04/2023 - http://prfalken.org

http://prfalken.org/

610.4 : In-depth Malware Analysis

Deobfuscating Malicious JavaScript (Page 3)

e eval : Run the parameter as JavaScript

e document.write / document.body.appendChild /
document.parentNode.insertBefore (Page 6) —> Add other
JavaScript

e arguments.callee (ex var M1FDAB=arguments.callee.toString())
allow a function to examine his own body —-> checks if code has
been modified! (Page 18)

e js—-beautify : can beautify JavaScript code
e extractscripts.py : extract JavaScript from a webpage
e SpiderMonkey
o JavaScript interpreter from Mozilla/FF (js —f script.js)
o JavaScript interpreter with other definitions and modified
eval function (js —f /usr/share/remnux/objects.js —f
script.js)
e box—-js : For scripts designed to run outside browser

e Cscript (VBS and JS)

o AMSI Trace (Page 10)

e logman start AMSITrace -p Microsoft-Antimalware-Scan-
Interface Eventl -o AMSITrace.etl -ets

e cscript.exe script.js
e logman stop AMSITrace -ets
e AMSIScriptContentRetrieval > script-output.txt

o Redefine the "eval" function to add a "WScript.Echo(XXX)"

before eval(XXX) (Page 12)

Created by Martin Bayard in 04/2023 - http://prfalken.org

http://prfalken.org/

Recognizing Packed Malware (Page 19)

Few readable strings

Limited Imports

High Entropy

Section Names

RawSize of section = 0 but VirtualSize > 0 (ie where the code
will be unpacked)

PEStudio

Detect It Easy

Exeinfo PE

Bytehist (for bytes distribution : not uniform -> not packed,
uniform —> packed)

Getting Started with Unpacking (Page 32)

e Disable ASLR (Modify the flag in the DllCharacteristics field of
PE Header or use "setdllcharacteristics -d file.exe")

e Run and let it unpack itself

e Search for strings with Process Hacker in the running process to
confirm it's unpacked

e Run Scylla.exe and attach to the process

Dump

IAT Autosearch

Get Imports

Fix Dump

O O O O

While "dirty", this approach is suitable for static analysis and have
an overview of the malware. However, since we didn't fix the OEP, the
dumped executable won't run.

Created by Martin Bayard in 04/2023 - http://prfalken.org

http://prfalken.org/

Using Debugger for Dumping (Page u45)

Disable ASLR
Load packed exe into x6udbg
Find the end of the unpacker code
Trace until OEP
o Confirm by "Search for" -> "Current Region" —-> "String
References" to find some useful strings
o Confirm by "Search for" -> "Current Region" —>
"Intermodular calls" to find some useful API calls
Dump process with "Plugins" -> "OllyDumpEx" —> "Dump Process"
o Get RIP as OEP (because we are on the first instruction of
the unpacked code)
o Set section UPX1 with MEM_WRITE attribute (otherwise
crash)
o Dump
Rebuilt IAT with "Plugins" -> "Scylla"
o IAT Autosearch
o Get Imports
o Fix Dump (select the dump made with OllyDumpEx)

With this modified UPXed binary it's easy to find the end of the
unpacking code, but in real life, it may be more complicated.

Debugging Packed Malware (Page 61)

Disable ASLR

Load packed exe into xé6u4dbg and run it (F9)

In Memory Map, look for memory segments with "E" (execute) flag
in the Protection column

Right click and "Follow in Disassembler"

Confirm by "Search for" —-> "Current Region" -> "Intermodular
calls" to find some useful API calls

Pick an interesting API and "Follow in Disassembler"

Set a hardware breakpoint after the call to the API

Restart the program (Ctrl-F2) and run it (F9)

Continue debugging to get what you're looking for (decrypted
configuration files ..)

Created by Martin Bayard in 04/2023 - http://prfalken.org

http://prfalken.org/

Analyzing Multi-Technology Malware (Page 73)

reg_export : Useful to export a registry key which contains
values that would have not have been exported properly by
Regedit
PowerShell ISE :
o Set a breakpoint when the shellcode is ready but not yet
injected
o Save the shellcode into a file
([io.file]: :WriteAllBytes('sc32.bin',$sc32))
scdbg
o Emulates the shellcode
o Passing the shellcode address as parameter to the
shellcode implies modifying the stack -> complicated
runsc32
o Runs the shellcode (runsc32 -f sc32.bin)
o Shellcode address is passed as parameter by runsc32 (-a to
disable this)

Runs the shellcode
Attach runsc32 process to x32dbg
Set a breakpoint at address displayed by runsc32 (beginning of
shellcode)
Continue the process in runsc32 window
Come back to x32dbg and see in the stack that the address was
given as parameter
Breakpoint on some interesting APIs
o Use the Call Stack to find the code that called the API
o Go to the code that called the API
o Next instruction -> "Run until selection"
Scroll and find other interesting API (VirtualAlloc for example)
Breakpoint on VirtualAlloc -> Ctrl-F9 -> F8
Right-click on EAX -> "Follow in dump" -> Dumpl
Continue the process and repeat for each VirtualAlloc call,
check every Dump window for interesting stuff
When a dump window contains a MZ header, it's interesting to
save it to disk
o Right-click -> "Follow in memory map"
© Dump memory to File

In this case the shellcode doesn't contain any GetEIP pattern but
expects his own address to be passed as argument by the PowerShell
script.

We could continue the analysis by analysing the MZ file we dumped from
the shellcode memory.

Created by Martin Bayard in 04/2023 - http://prfalken.org

http://prfalken.org/

Code Injection and API Hooking (Page 125)

API Examples :

CreateToolsHelp32Snapshot or EnumProcesses or CreateProcess
OpenProcess

VirtualAllocEx

WriteProcesslMemory

CreateRemoteThread

Malware may use lower level calls to remain undetected (names start
with Nt/Zw/Rtl).

Native API Examples :
e NtQuerySystemInformation
NtOpenProcess or ZwOpenProcess

e NtAllocateVirtualMemory or ZwAllocateVirtualMemory
e NtWriteVirtualMemory or ZwWriteVirtualMemory
e NtCreateThreadEx or ZwCreateThreadEx

Methodology :

e Open the file in Ghidra
e Look for CreateRemoteThread in Windows —> Symbol References
e Look around for other API calls related to Code Injection :
o In Windows —-> Function Call Trees
o In Windows -> Function Call Graph
e Note that VirtualAllocEx takes 0x40 as parameter
(PAGE_EXECUTE_READWRITE)

The goal is to execute LoadlLibrary as a thread inside the victim process
(to load a malicious DLL)

e Open the victim process (OpenProcess)

e Get some memory in the victim process (VirtualAllocEx)

e Write the DLL name in the previously allocated memory of the
victim process (WriteProcessMemory)

e Call GetModuleHandle on kernel32.dll and GetProcAddress on
LoadLibrary to locate the address of the LoadlLibrary function

e Call CreateRemoteThread asking the victim process to run the
LoadLibrary function in a new thread with the DLL name as
parameter

Created by Martin Bayard in 04/2023 - http://prfalken.org

http://prfalken.org/

Inline hooks : patch the beginning of targeted functions to jump into
the rootkit

Methodology :
e ReadProcessMemory : Read the 1st few bytes of the targeted

function so they can be backed up for future use
e VirtualProtect : If needed to make the region writable
e lWriteProcessMemory : Overwrite the start of the targeted
function with opcodes to jump into the rootkit
o JMP (OxE9)
o PUSH (0x68) / RET (0xC3) : less visible than a classic

jump

Created by Martin Bayard in 04/2023 - http://prfalken.org

http://prfalken.org/

610.5 : Examining Self-Defending Malware

Debugger Detection and Data Protection (Page 3)

Well known detection techniques

(0]
o
o
°
°

IsDebuggerPresent : 0 means no debugger
CheckRemoteDebuggerPresent
NtQueryInformationProcess (Example with Debugger port on Page
39) / ZwQueryInformationProcess
OutputDebugString (valid value is being debugged)
Check BeingDebugged field in PEB (Page 12)
o MOV EAX, FS:[30h] ; Get address of the PEB
o MOV EAX, [EAX+2] ; Get field value
o TEST EAX, EAX ; Test field value
Check if NtGlobalFlag field in PEB is 0x70 (Page 13)

FLG_HEAP_ENABLE_TAIL_CHECK (0x10) + FLG_HEAP_ENABLE_FREE_CHECK
(0x20) + FLG_HEAP_VALIDATE_PARAMETERS (0Xu0)

MOV EAX, DWORD PTR FS:[30]

TEST BYTE PTR DS:[EAX+68], 70

GetTickCount (Check if execution is too slow -> debugged)
GetLocalTime, GetSystemTime

RDTSC (Read Time-Stamp Counter) (Page 14)

Bypass

Patch the return value manually
Patch the program itself manually (Page 10)
Easier way : Use ScyllaHide Plugin and check the 1lst column

Looking for a specific pattern like "http:" (Page 17)
xorsearch -i -s getdown.exe http:

Looking for English words (Page 18) : brxor.py hubert.dll
Using multiple transformation types and get ranked results :
bbrack -1 1 hubert.dll

Stack Strings

In Ghidra we can define a shortcut to convert to Char via the
Keybindings
Extract Stack Strings (Page 24) : strdeobg.pl 9.exe
Extract Stack Strings and other types (Page 25)
o floss 9.exe
o floss 9.exe —--no-static-strings
o -x to see address of the obfuscation method detected by
Floss

Discovered strings can indicate risky API calls that we can breakpoint
on (example RtlDecompressBuffer (Page 30))

Created by Martin Bayard in 04/2023 - http://prfalken.org

http://prfalken.org/

Unpacking Process Hollowing (Page u43)

Pattern (Page 52)

CreateProcess (or variations) in suspended mode
NtUnmapViewOfSection (or ZwUnmapViewOfSection) to deallocate
virtual memory of the process

VirtualAllocEx (or variations) to allocate memory for new code
WriteProcessMemory (or variations) to write the new code
GetThreadContext

SetThreadContext

ResumeThread to awake the suspended process and run the new code

Using capa -vv, find an indicator of process hollowing -> "Create
Process: :Create Suspended Process"

Using Ghidra

Confirm that dwCreationFlags=0x4 when CreateProcessA is called
(Page u49)

Look around of other typical API calls related to process
hollowing

Disable ASLR / Load in x32dbg

Breakpoint on WriteProcessMemory

Follow the 1lpBuffer parameter in a Dump Window
Follow the Dump in Memory Map

Dump memory to File

Examine dumped file with PEStudio

Detecting the Analysis Toolkit (Page 61)

Hardware characteristics

o MAC addresses

o Video Controllers

o Numbers of CPU cores

o Large disk

o Mouse Moving (via Hook)
Installed programs

o Registry Keys

o Files

o Processes
File Path assigned to malware detonation

Username
System
o Name
o IP address scheme
o Uptime
o Empty clipboard

Created by Martin Bayard in 04/2023 - http://prfalken.org

http://prfalken.org/

e Load in Ghidra

e Search for calls to SetWindowsHookEXxA

e Installs a hook on WH_MOUSE_LL (Oxe) to a function of its own
process (Page 68)

e Checks for WM_MOUSEMOVE (0x200) but does nothing (Calls
CallNextHooKEx)

e Checks for WM_LBUTTONDOWN (0x201) but does nothing (Calls
CallNextHooKEx)

e Checks for WM_LBUTTONUP (0x202) then calls UnhookWindowsHooKEXx
then malware is triggered (Page 70)

e Disable ASLR / Load in x32dbg
e (Close to Entry Point we see that process exits if U402BD6 returns
1= 0
e Step in 402BD6 to see a lot of checks :
o BlockInput to prevent analyst to work —> patch the value
from 1 to 0 (Page 75)
o GetModuleHandleW on avghookx.dll (Page 76)
o FindwWindow on OLLYDBG and others debuggers (Page 77)
o Reads from 7FFEO2D4 : if != 0 —> Kernel-mode debugger is
present (Page 78)
o IsDebuggerPresent (Page 79)
o GetModuleHandleW to find unwanted modules to be loaded
(Page 80)
o CreateToolhelp32Snapshot, Process32FirstW, Process32NextW
to find unwanted process (Page 83)
o RegOpenKeyExW, RegOpenValue to find the type of the hard
disk (Vmware disk device..)
e We note that all the checks are within 402BD6, to bypass : (Page
89)
o Modify EAX after the call
o Patch the file

Created by Martin Bayard in 04/2023 - http://prfalken.org

http://prfalken.org/

Handling Misdirection Techniques (Page 93)

SEH Chain

e Linked list of SEH records

e Stored on the stack

e The address first SEH record of the chain is located at the
beginning of the TIB structure -> FS:[0] (For 6uU-bit program the
TIB is pointed by the GS register)

e SEH Tab in x32dbg shows the SEH Chain, also visible by adding a
Watch on "fs:[0]"

SEH record
e 32-bit programs : frame-based mechanisms
o The _EXCEPTION_REGISTRATION structure has 2 elements :
e Pointer to the next (previously defined) SEH record
e Pointer to the exception-handling mechanism
e 6U-bit programs : table-based approach

The exception handler may be used as a nonstandard branching mechanism.
When an exception happens, the flow of execution continues within the
exception handler.

Example with want.exe (PECompact) (Page 100)
e Load in x32dbg / Disable Exceptions Catching
e A new SEH record is pushed on the stack and an exception is
raised to continue execution of code within the handler
e Breakpoint on the new SEH Handler and run
e To get close to the OEP, we look when the packer will remove the
SEH record from the stack (or reuse this space)
o Set a hardware-based breakpoint on the top of the stack
(which contains currently the address of the handler)
© Run a few times until it breaks out of ntdll.dll AND that
we have some strings visible in the region
e Once we break on a JMP EAX, step Over (F8) and see what looks
like a function prologue
e Confirm by "Search for" -> "Current Region" —-> "String
References" to find some useful strings
e Dump the process with OllyDumpEx (Click Get EIP as OEP)
e Rebuilds IAT with Scylla (IAT Autosearch + Get Imports + Fix
Dump)
e Load the dumped executable into PEStudio and see strings /
imports

Created by Martin Bayard in 04/2023 - http://prfalken.org

http://prfalken.org/

Description
e Designed to store different values for a global variable for
each thread
e Run before code at entry point
e Visible in PEStudio / Ghidra (in Symbol Tree -> Exports)
e x32dbg usually breaks on TLS callbacks if there are some (check
the box)

Example with lansrv.exe (Page 116)
e Disable ASLR / Load in x32dbg / Disable Exceptions Catching
e The TLS function contains a XOR loop for decryption
e Set a hardware breakpoint after the loop (after because the loop
will overwrite the values, including the CC) (Page 121)
e We now see a IsDebuggerPresent call that will store Ox0B at
401015 if TRUE, or 0x00 if FALSE (Page 123)
e Continue tracing until after the entry point and set another
breakpoint after the visible loop (Page 125)
e Malware assigns FS register value to GS in order to manipulate
SEH via GS:[0] sneakily (instead of FS:[0]) (Page 127)
e Malware modifies the value of the 1st SEH record instead of
creating a new one (Page 134)
e Malware sleep a bit to complicate analysis, and make a division
by the variable defined in the TLS (at 401015) (Page 138)
o If debugger is not detected, value is 0x00, exception is
raised, malicious SEH handler is called
o If debugger is detected, value is 0x0B, exception is NOT
raised, other code branch is taken, crashes or exits

Created by Martin Bayard in 04/2023 - http://prfalken.org

http://prfalken.org/

Unpacking by Anticipating Actions (Page 143)

As there few imports, we expect yep.exe to call LoadLibraryA runtime.

e Load in x32dbg / Disable Exceptions Catching

e Set a breakpoint on LoadLibraryA

e Run until specimen loads msvcrt.dll (which was not in the
imports)

e We should be close to OEP, check with xAnalyzer -> Analyze
Function and see that functions address are being called from
the stack (Page 151)

e Notice VirtualProtect, set a breakpoint on VirtualProtect and
continue running (Page 153)

e Once reached, follow the 1st parameter in a dump Window, we see
a MZ structure at Ox400000, but not sure unpacking is finished
at this point (Page 154)

e Continue debugging until we break on VirtualProtect with 0x20 as
parameter (PAGE_EXECUTE_READ) on region 0x401000

e Follow the region in a dump window and set a Breakpoint ->
Memory, Execute —> Singleshoot (after the VirtualProtect is
executed) (Page 159)

e Once reached, it's good time to dump, Follow Ox401000 in memory
map, the segment will start at Ox400000, dump memory to file
(Page 161)

e Use pe_unmapper on the dumped file to rebase it and other tweaks
(Page 162)

e Use Scylla to rebuild imports and fix the dump previously fixed
by pe_unmapper (Page 163)

e Load the dumped / fixed executable into PEStudio and see strings
/ imports

Note that some malwares can check if we have a breakpoint on LoadlLibrary

by checking if the address starts with 0xCC (int3), we can use hardware
breakpoint (using registers) instead to avoid being detected.

Created by Martin Bayard in 04/2023 - http://prfalken.org

http://prfalken.org/

